BOI

2010 Day: 1
Tartu Task: pcb
Estonia Language: ENG

Printed Circuit Board (Spoiler)

It should be quite obvious that this task could be modeled as a graph coloring problem. Indeed,
we could create a graph with a vertex for each conductor and an edge between vertices for
conductors that would intersect if they were in the same layer. Then obviously a vertex coloring
(an assignment of colors to vertices such that no edge would connect two vertices of the same
color) could be used to distribute the conductors to layers.

The problem with this approach is that vertex coloring with minimal number of colors is known
to be NP-complete. Thus, the best known algorithm for solving the problem in the general case
is exhaustive search, which is much too slow to consider for a graph with 100,000 vertices. Such
a solution is given in the file pcbsoll.pas and would score about 40 points.

Only a small subset of all graphs are models of boards that could appear as the input in this
task, but it is not at all obvious how to exploit this fact to speed up the search for a vertex
coloring. Thus, it is probably more fruitful to look for another way to model the input data.

And indeed, if we sort the conductors in the order of the X-coordinates of the endpoints on
the bottom side of the board, then the potential intersections are defined by the X-coordinates
of the endpoints on the top side of the board. In fact, the number of layers needed is exactly
the length of the longest decreasing subsequence in the X-coordinates of the top-side endpoints,
when the X-coordinates of the bottom-side endpoints are in increasing order.

The longest decreasing subsequence of a given integer sequence can be found using a simple
dynamic programming solution: for each element A;, we compute Z;, the length of the longest
decreasing subsequence that would end with that element; to compute Z;, we only need to find
the largest Z; such that j < i and A; > A;. This can be done trivially using a linear scan of all
j <1, for a solution with O(N?) running time. Such a solution is given in the file pcbsol2a.pas
and would score about 70 points.

For a more efficient solution, we could build an index on top of the known values of Z;. One
way to do this is to create a binary tree with W 41 leaves and all non-leaf nodes containing the
maximum values in their corresponding subtrees. Initially we fill the tree with zeroes. Whenever
we compute a new Z;, we store it in the leaf number A; in the tree and update the maximums
on the path from the updated leaf to the root in O(log W) time. To compute Z;, we only need
the maximum value currently in the tree among the leaves numbered greater than A;, which we
can also compute in O(log W) time. Therefore we can solve the whole problem in O(N log W)
time. Such a solution (using heapsort to order the conductors) is given in the file pcbsol2b.pas
and would score full points.

1/1



