
BOI
2010
Tartu
Estonia

Day: 2
Task: candies

Language: ENG

Candies (Spoiler)

1 Initial observations

First of all, we have to note that instead of altering the number of candies in one package, we
can say that Kristian first discards one package and then adds a new one. We start with the
observation that by adding a package with sufficiently many candies Kristian can always double
the number of options he can give to a customer. Hence, we divide the solution into two stages:

1. Remove one package, such that the number of distinct orders decreases as little as possible.

2. Add a package with the smallest possible size, which doubles the number of distinct orders.

2 The first stage

We can easily fill a boolean array orders[x], such that orders[x] is true iff we can serve order of
size x. This takes O(BN2) time with DP, where B is the limit for the size of each package. In
this task however, we need a slightly smarter data structure. We define orders[x] as the number
of subsets of packages, which have x candies in total. The array is filled with a DP algorithm
that works almost the same way. Now, we can serve an order of size x iff orders[x] > 0. Below
is some code that shows how to compute it:

for(int i=0; i<N; i++)
for(int j=N*B; j>=packages[i]; j--)

orders[j] += orders[j-packages[i]];

The important property of this array, is that after we build an array for a set of packages P , we
can efficiently obtain an analogous array for each N − 1–element subset of P in O(NB) time.
We have to look at the array orders as on a data structure. We iterate through all the packages
and add them one by one to the structure. The important property of this process is that every
step can be reversed and we can remove a package number p that has already been added by
‘reversing’ the DP:

for(int j=packages[p]; j<=N*B; j++)
orders[j] -= orders[j-packages[p]];

In this way, we obtain the array orders[x] for each N − 1–element subset in O(BN2) total time.

Note that orders[x] can overflow even a 64-bit integer, as it can be as big as 2100. To deal with
that, we can make all calculations modulo a random big prime number — the chance that the
algorithm would fail, ie. orders[x] mod P = 0 and orders[x] > 0 is very low. Alternatively,
we can use simple big-integer arithmetics and instead of keeping orders[x], just keep orders[x]
mod P1 and orders[x] mod P2, where P1 and P2 are big prime numbers, such that P1P2 > 2100.

1/2



BOI
2010
Tartu
Estonia

Day: 2
Task: candies

Language: ENG

It has to be noted that in theory this algorithm runs in O(BN3) time, as every element of
orders[x] has to be a O(N)-bit number. In practice, the version with 64-bit integers is relatively
slow, because of the costly modulo operation.

However, there is another approach to solve the first part of the task. Again, for a given set
of packages p1, p2, p3, ..., pN , we have to build some data structures for all its N − 1–element
subsets. We already know how to construct a data structure, which for a given set of packages
says how many different orders can be served with them. Adding a package to the structure
takes O(NB) time. Building a structure for each N − 1–element subset can be achieved using a
recursive approach. Function generate, whose pseudocode is shown below, takes two arguments.
The first is a list of package sizes and the second is a data structure that represents some set of
packages. It generates all data structures that can be obtained by extending the structure with
a m− 1–element subset of packages.

Algorithm 1 generate((p1, p2, p3, ..., pm), S)
if m = 1 then

S is one of the desired structures
else

S′ = add(S, (p1, p2, ..., pbm
2
c))

S′′ = add(S, (pbm
2
c+1, ..., pm))

generate((pbm
2
c+1, ..., pm), S′)

generate((p1, p2, ..., pbm
2
c), S′′)

end if

The add function adds a set of packages to the data structure given by the first argument. It
runs in O(BNm) time, if the size of the added set is O(m). It can be shown that the generate
function can iterate through all structures for all m− 1–element subsets in O(BN2 log N) total
time.

3 The second stage

Now we need to find a package of smallest possible size, which added to a set of packages
p1, p2, p3, ..., pn, doubles the number of possible orders we can serve. If we can serve orders of
size x1, x2, x3, ..., then adding a package of size T doubles the number of possible distinct orders
iff T is not equal to any of xi − xj . So we need to find the smallest positive T , which cannot be
expressed as xi− xj , where xi and xj are possible orders. To do that, it is sufficient to generate
all ‘orders’ we can serve with packages of size p1,−p1, p2,−p2, ..., pn,−pn and find the smallest
possible integer, which cannot be obtained from packages of this size.

2/2


